Automatic Generation of Test Oracles
- From Pilot Studies to Application

Martin S. Feather
Jet Propulsion Laboratory,
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109, USA
+1 818 354 1194
Martin.S .Feather@Jpl.Nasa.Gov

ABSTRACT

Cost, performance and functionality concerns are driving a
trend towards use of self-sufficient autonomous systems in
place of human-controlled mechanisms. Verification and
validation (V&V) of such systems is particularly crucial

given that they will operate for long periods with little or.

no human supervision. Furthermore, V&V must itself be
done at low cost, rapidly and effectively, even as the
systems to which it is applied grow in complexity and
sophistication.

In response to this challenge we have sought to insert more
automation into the V&V process. Through a pair of pilot
studies we ascertained the opportunities for, and suitability
of, automating various analyses whose results would
contribute to V&V. These studies culminated in the
development of an automatic generator of automated test
oracles. This has been applied to aid testing an Al planning
system that is a key component of an autonomous space
probe.

The pilot studies and development were organized as
loosely coupled joint efforts involving a V&V expert and
planner experts. This arrangement made good use of the
planner experts’ limited time.

Keywords |
Test Oracles, Verification and Validation, Analysis,
" Planning, NASA

1 INTRODUCTION

Cost, performance and functionality concerns are driving a
move towards use of self-sufficient autonomous systems.in
place of human-controlled mechanisms. Space probes

Ben Smith
Jet Propulsion Laboratory,
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109, USA
+1 818 353 5371
Ben.D.Smith@Jpl.Nasa.Gov

exemplify the motivations for this trend. The post-launch
operational costs of predominantly human-controlled space
probes are considerable, requiring frequent involvement of
human operators to monitor their status, and to prepare and
transmit detailed sequences of commands to direct their
actions. The probes may operate at distances from Earth so
great as cause significant communication delays (e.g.,.
Jupiter can be as far away as to require 2 hours round-trip
communication time). This leads to complicated command
sequences because they must be constructed to anticipate
many possible eventualities. It also leads to inflexible
behavior by the probes which, uponencountering some
unanticipated circumstance, must essentially stop what they
are doing and call back home for help. Increasing the on-
board autonomy of space probes holds the alluring promise
of decreased overall mission cost, and increased
performance, functionality and robustness.

However, autonomous systems, by their very nature, will
be expected to operate for long periods of time with little or
no human supervision. Also, the software components of
such systems are complicated. Autonomous components
can exhibit a much wider range of behaviorsthan the
command sequence execution mechanisms of more
traditional designs. Furthermore, they must respond
correctly to a wide range of environmental circumstances.
Together, these make verification and validation (V&V) of
the correctness of autonomous systems a crucial and
challenging endeavor.

One response to this challenge is to judiciously insert
automation into the V&V process. This must yield benefits
(notably, by saving some manual effort and/or achieving
some analysis that would be impractical to perform
manually). Furthermore, the development of the automation
must itself be a relatively rapid and inexpensive process, so
that the overall effort yields a net saving in time and cost.

This is the approach we followed in the context of V&V of
a spacecraft's autonomous system. The dominant limiting
factor we faced was the time of the planner experts
themselves. As will be seen, this had ramifications

Early '97 Oct’97-Dec’97

S
3 2
g5
2 g Pil dy 2

t st :

R R Pilot study I: allxt?)rrialtjeg
§ rapid analysis for V&V
> automated of plans output
§ ana}ys1s of by Al planner
> design
X documents
>
Figure 1 - Overview of Project Phases

Apr’98-Jun’98 Jun '98 -
Application
to V&V of
Development of su;(ézor:‘é)s:,s
an automated pace p

plans
generator of

automatic V&V
of all plan
constraints

throughout. Our overall effort is presented in Figure 1. The
four boxes show its major phases; the sections that follow
present further details on each of these. The boxes are
positioned horizontally to show chronological order,
progressing from earliest (at the left) to latest (at the right).
The boxes are positioned vertically with respect to a
dividing line to show the relative degree of time and effort
expended by two classes of personnel. These were the
spacecraft personnel, who understood the space probe and
its autonomous control system, and the V&V tool person,
who understood analysis tools and their construction. Of
necessity, we followed a cooperative approach, since
neither class of people had the time to become expert in the
other area. Indeed, the most critical limiting resource
throughout was the time of the spacecraft personnel.

2 FIRST PILOT STUDY: RAPID AUTOMATED
ANALYSIS

NASA provides internal research funding to support pilot

studies. As the name suggests, a “pilot study” is intended to

research to actual practice.

The work reported in this paper began with a pilot study,
conducted in 1977. The goal of the study was to rapidly
develop and apply automated analysis to verify simple
properties of spacecraft designs. It was an objective of the
study that the approach work with existing design
documents, rather than require their manual re-expression”
into some other notation in preparation for analysis.
Another objective was that the analysis itself be rapid and
flexible, so that it would yield results quickly, and be
amenable to tuning as the analyst gained understanding of
the objects of analysis. The approach was founded upon the
use of a database as the underlying reasoning engine — see
Figure 2. Its four main steps were:

1. Creation of a database schema to represent the design
information. This was a purely manual step. Most of
the effort went into understanding the design
documentation. The actual creation of the schema was

be a preliminary investigation of
some tool, technique or method,
applied to a representative problem.
A pilot study can thus address
somewhat speculative approaches
or applications. In contrast, the
commitment to rely upon an

V&V conditions

Database schema

design
information

DESIGN
DOCUMENT

2. Automatic, or
semi-automatic

approach in the actual development 3. Manual . Manually created loading of
of a spacecraft does not have the translation database
fuxury of such uncertainty. The

discovery partway through > DATABASE [¢————
development that a relied-upon Database queries Data

technique, say, is not applicable
could have serious repercussions on
schedule, budget and even mission
success. Pilot studies in NASA (and
other organizations) thus play an
important role as the first step

l 4. Automatic analysis

Query results (confirmations or anomalies)

Figure 2 - Architecture of First Pilot Study

towards technology transfer from

straightforward.

2. Loading the design information into the database. This
was made a predominantly automated operation, by
constructing special-purpose programs to extract
information from design documents and translate into
the format of the database schema. The high degree of
automation made the approach practical for handling
voluminous amounts of design information.

3. Determining V&V conditions and expressing them as
database queries. Like step 1, the bulk of the effort
here went into understanding the domain so as to
decide what V&V conditions to analyze for. Having
made this decision, it was relatively straightforward to
express them as database queries.

4. Analysis. The analysis step was performed by
evaluating the database queries against the data, i.e.,
evaluating the V&V conditions on the design
information. The database query mechanism made this
step fast and automatic. The reporting of the query
results was organized into confirmations and anomaly
reports. Generally, these were easy to understand and
interpret by the V&V expert and also by the planner
experts.

The pilot study examined two sets of design documents —
interface diagrams (i.e., summaries of incoming and
outgoing connections of software modules) and test logs
(i.e., traces of behaviors generated in testing of the software
components in simulations). Modest verification conditions
were successfully analyzed in this manner, suggesting the
viability of the overall approach — see [Feather1998] for
details.

This study was conducted primarily by the V&V tool
expert. Relatively little time of planner experts was
required; their involvement took the form of answering
questions and providing clarifications about the design
documents, and reviewing the analysis results to confirm
their validity (or correcting the V&V tool expert’s
misunderstandings!).

The study did not focus on the autonomy-specific aspects
of the space probe software. It was felt that another pilot
study was needed to determine that applicability.

3 SECOND PILOT STUDY: V&V OF AN

AUTONOMOUS PLANNER’S OUTPUT
There was concern that autonomous spacecraft control
systems might pose a new set of challenges for V&V. The
rapid analysis approach of the first pilot study was
identified as having potential application to this challenge.
In particular, V&V of the AI planning component of an
autonomous spacecraft design was to be the focus of the
second study. This section provides some background on
the autonomous spacecraft, and summarizes this second
pilot study.

An Autonomous Space Probe

NASA’s “New Millennium” scries of space probes is
intended to evaluate promising new technologies and
instruments. The first of these, “Deep Space 1" (DS1) (DS
1998], is to be launched in 1998. Increased autonomy is
one of several innovative goals that DS-1 will demonstrate
[RAX 1998]. The “Remote Agent” [Pell 1996, Pell 1997]
will be the first artificial intelligence-based autonomy
architecture to reside in the flight processor of a spacecraft
and control it for 6 days without ground intervention. The
Remote Agent achieves its high level of autonomy by using
an architecture with three key modules:

e an integrated planning and scheduling system that
generates sequences of actions (plans) from high-level
goals,

e aintelligent executive that carries out those actions and
can respond to execution time anomalies, and

¢ a model-based identification and recovery system that
identifies faults and suggests repair strategies.

DS-1’s planner generates sequences of activities (e.g., turn
on camera; take photograph; transfer image to file) that
control the various devices of the spacecraft over a period.
of several days. A series of plans will be generated and
executed to conduct the autonomy experiment for a week's
duration. The real time executive and diagnosis engine
carry out the planned activities in real time, monitoring for,
and reacting accordingly to, hardware faults and other
surprises if and when they arise. In the case that a hardware
fault is disruptive enough to render the current plan
unachievable, the real-time executive is able to recognize
this, place the probe into a safe state, and invoke the
planner again, with an updated state of health of the probe.

The planner is a critical component of the autonomy
architecture. Without the ability to generate plans on-board,
the spacecraft command sequences would have to be
constructed manually, on Earth, and transmitted to the
space probe. To guard against this, the planner experts test
the planner extensively, in a variety of scenarios. These
include scenarios of nominal operation (when the
spacecraft hardware is operating as expected) and off-
nominal operation (when the spacecraft hardware is
malfunctioning). The correct operation of the planner in all
circumstances is crucial. The command sequences
generated by the planner direct navigation, attitude control,
power allocation, communication with earth, etc. The entire
mission could be jeopardized by an erfor in an command
sequence pertaining to any of these areas. For example, the
June 1998 loss of contact with the Solar and Heliospheric
Observatory (SOHO) spacecraft is believed to have
involved “errors in preprogrammed command sequences”
[SOHO 1998].

Automated Verification of Plans’ Temporal Constraints
The second pilot study focussed on DS-1's planner. The

objective of this study was to determine the viability of the
database-based-analysis approach to verification of key
properties of the planner's outputs.

The planner takes as input a description of the initial state,
a mission profile (i.e., goals to achieve), and a set of
temporal constraints that must hold of the generated plan.
The output, a plan, is a schedule of activities for the space
probe’s hardware and instruments.

The approach pioneered in the first pilot study was applied
to DS-1’s planner. Figure 3 shows the architecture of the
result.

conditions for analysis were to be chosen from the
constraints that served as input to the planner. A
representative sample of these was selected for hand-
translation into the equivalent database queries. The
hypothesis was that this would be straightforward,
based on the following reasoning.

The planner has to be able to generate plans; its
constraint language is crafted to simultaneously ease
the expression of certain constraints, and limit the form
of expression to those that it can readily handle.
Conversely, the database only has to be able to
evaluate queries about a specific set of data, a far

Goals & initial
conditions [PLANNER |_,] PLAN

constraints >

easier task than the search-
intensive task of planning. The

activities of plan database query language is an

Database schema

3. Manual
translation

1. Manually created

>

database queries

DATABASE

Figure 3 — Architecture of Second Pilot Study

—

l 4. Automatic analysis

Query results (confirmations or anomalies)

extensible, general-purpose
language and so should be
capable of straightforwardly
expressing the planner’s
constraints.

2. Automatic
loading of

database

Experience confirmed that it
was indeed easy to extend the
data database language to
accommodate the planner-
specific constructs. Some
translation between syntactic
forms was required, but this
was readily accomplished by
straightforward programming.
Examples are given later in

As before, it is organized into four main stages:

1. Creation of database schema to represent the plan’s
activities. This was a straightforward, manual task. The
choice of what information to analyze was determined
at the outset of this study. Namely, the activities
scheduled by the planner, as appearing in the plans it
generates.

2. Loading the database with plan activities. This was
made a completely automatic step in this pilot study.
The amount of effort to do this was small, in part
because DS-1's autonomous agent software and the
database used for analysis both happen to be
implemented in the same programming language
(Common Lisp). The plans generated by the planner
take the form of Lisp data structures. It was easy to
load such structures into the database — simply provide
the data structure definitions, and invoke the Lisp
reader! Had there not been this fortuitous coincidence
of a common implementation language, it would have
been necessary to develop code to parse and translate
between linguistic forms. This would have been a
standard software programming task.

3. Translation of constraints. For this study, the V&V

this section.

4. Analysis. As before, analysis was automatic, yielding
reports of confirmations and anomalies.

The system constructed in this second pilot study was
successful in automatically analyzing plans for adherence
to a representative sample of temporal constraints. The
plans upon which this was tested were actual plans
produced during exercising of the DS-1 planner by the
planner experts. Such plans were quite verbose — ranging
from 1,000 lines to 5,000 lines in length. It was anticipated
that thousands of plans would be generated through the
course of development. Clearly, the automated checking of
constraints would replace an otherwise onerous manual
task, and make feasible the thorough checking of all plans.

Pertinent Details of the Second Pilot Study

In this second pilot study, while the amount of time
expended by the planner experts remained well below that
expended by the V&V tool expert, it was noticeably higher
than had the case for the first pilot study. Generally, we
attribute this to the need to delve into more application-
specific details, resulting in the need for more coaching of
the V&V tool expert by the spacecraft planner experts. To
convey a feel for this issue, here is an example of one of the

simpler plan constraints expressed in the planner’s special
purpose language:

(Define_Compatibility

;; Idle_Segment

(SINGLE ((SEP_Schedule SEP_Schedule_SV))
(Idle_Segment))
:duration_bounds [1 _plus_infinity_]
:compatibility_spec
(AND
;i Thrust and Idle segments must all
meet--no gaps
(meets
(SINGLE
((SEP_Schedule SEP_Schedule_SV))
((Thrust_Segment (?_any value_
?_any_value_)))))
(met_by
(SINGLE
((SEP_Schedule SEP_Schedule_sV))
((Thrust_Segment (?_any _value_
?_any _value_)))))))
This simple example illustrates several areas where
knowledge held by the planner experts had to be transferred
to the V&V expert:

e Overall application domain: In the above, “SEP” is
an acronym for “Solar Electric Propulsion,” the
innovative engine that provides thrust to the DS-1
probe. “Thrust” and “Idle” are the two main states this
engine can be in.

Knowledge such as this of the space probe domain
provided usefjl intuition to the V&V expert, and this
second pilot study warranted a deeper level of
understanding than had been necessary for the first
pilot study.

e Problem-specific terminology: In the above,
“SINGLE” has a connotation specific to DS-1’s
planner. It introduces a description that matches a
single interval. (Alternatives are “MULTIPLE,”
introducing a description that matches a contiguous
sequence of intervals, and “DELTA MULTIPLE”
introducing a description that matches a contiguous
sequence of intervals that manipulate some
quantitative resource, e.g., power). The DS-1 planner
experts were the only people who had a complete
understanding of this level of detail.

e Terminological variants: The overall definition is of
a “compatibility”, a concept that the V&V expert
preferred to think of as a “constraint,” in keeping with
the terminology of the database tool he employed.
Another example is the “?_any_value” term, which
serves as a wildcard, indicating any acceptable
parameter value may occur in the corresponding
parameter position. Again, the V&YV expert had the

exact same concept, but preferred a different syntax.

e Confirmation of shared understanding: there were
some arcas of shared understanding, but these had to
be confirmed, not taken for granted. A trivial example
is “AND”, which in the above is used to indicate that
the constraint [compatibility] holds if all of the clauses
of this AND hold. More interesting are the terms
“meets” and “met-by,” which are binary temporal
relations between intervals, drawn from the work by
Allen [Allen 1983].

Plans exhibit a similar bewildering mix of domain- and
planner- specific information. A small fragment of a plan is
shown below. For example, “TOKEN” is a planner-specific
term corresponding to an interval.

#S{SV-TIMELINE
:NAME (SEP SEP_SV)
:NEW-B-TOKENS
(#S (C-TOKEN
:CARDINALITY :SINGLE
:NAME VAL-973
:SV-SPEC (SEP SEP_SV)
:TYPE-SPEC ((SEP_STANDBY (0 *
0))) ’
:START-B-TOKEN VAL-973
:END-B-TOKEN VAL-973
:STATE-VARIABLE (SEP SEP_SV)
: TOKEN-TYPE ((SEP_STANDBY
(0 (:BOUNDS 37800
500000000) 0)))
:DURATION (37800 500000000)
:START-TIME-POINT TP-1245
:END-TIME-POINT TP-1185
: COMPAT-CONSTRAINTS
((ABSOLUTE-START-CONSTRAINT
409277200 909315000)
(ABSOLUTE-END~-CONSTRAINT
909277200 1409277200)
{ABSOLUTE-END-CONSTRAINT
909277200 1409277200)
({(CONTAINS 0 500000000 0O
500000000) VAL-1651)
((CONTAINS O 0 0 0) SEQ-2694))
))

The net result was that the V&V expert required an
intensive session of coaching on the meaning of the planner
notations (plans and constraint language) at the start of this
pilot study, and additional assistance at various points
throughout.

Example of Translation from Planner Constraint to
Database Query

The central question answered by this pilot study was
whether the planner constraints could be readily hand
translated into the equivalent database queries. The anwer
was yes. An illustration foilows.

Consider the Idle_segment constraint given earlier. Its

essential core is the following:
(SINGLE ((SEP_Schedule
:compatibility_spec
(AND
(meets (SINGLE ((SEP_Schedule
(Thrust_Segment (?,?)))
(met_by (SINGLE ((SEP_Schedule
(Thrust_Segment (?,7?))))

The fragments (SINGLE ((SEP_Schedule . introduce
descriptions that are to match to activities of the SEP
scheduled in the plan. The first such description is of an
Idle_segment activity. For every instance of an activity
in the plan matching that description, the constraint
requires that the logical condition (AND ...) is true. The
logical condition is the conjunct of two clauses. The first
says that the matching instance meets a Thrust_Segment
activity, i.e., the end-point of the Idle_Segment activity
exactly coincides with the start point of some
Thrust_Segment also in the plan. The second says that
the matching instance is met_by a Thrust_Segment
activity, i.e., the start point of the former exactly coincides
with the end point of the latter Pictorially,

Thrust_Segment| Idle Segment |Thrust Segment
ety e

For translation, this is split into two separate constraints,
one for each clause of the conjunct. This allows the
checking to be conducted separately for each conjunct, so
that any anomaly in a plan can be narrowed down as much
as possible. The translated form of the first such conjunct
looks close to the following (it has been tidied up slightly
for presentation purposes):

...(Idle_Segment))

(A (x) (IMPLIES
(activity-in-plan x Idle_Segment SINGLE
SEP_Schedule)
(E (y) (AND (activity-in-plan
Thrust_Segment SINGLE SEP_Schedule)
(meets x y)))))

A and E are the database’s notations for the logical concepts
for-all and exists. IMPLIES and AND have the standard
logical meaning. activity-in-plan is a ternary relation
(defined for plan checking) that relates an activity name
(e.g., Thrust_Segment) to a keyword (e.g., SINGLE) and
schedule (e.g., SEP_Schedule). meets is a binary relation
(again, defined for plan checking) that relates two activities
if and only if the end point of the first coincides exactly
with the start point of the second.

For this pilot study, a hand-translation was also done for
some of the more complex planner constraints. Their
additional complexity stemmed from references to
activities’ parameter values. For example:

(Define_Compatibility

s

;; compats on Max_Thrust_Time

(SINGLE
((SEP_Thrust_Timer SEP_Thrust_Timer_SV))
((Max_Thrust_Time (100 ?reset))))

:compatibility_spec

(AND

(ends

(SINGLE
((SEP_Time_Accum SEP_Time_Accum_SV))
((Accumulated_Thrust_Time
(100 0 ?reset
WHILE_NOT_THRUSTING)))))

.o0))
This definition says that every Max_Thrust_Time interval
whose first parameter is 100 must end an
Accumulated_Thrust_Time interval whose four
parameters are respectively 100, 0, the same value as
Max_Thrust_Time interval’s second parameter, and
WHILE_NOT_THRUSTING. ?reset is being used as an
implicit logical variable that constrains the values in all the
places it occurs (namely, the second parameter of
Max_Thrust_Time, and the third parameter of
Accumulated_Thrust_Time) to be the same.

Hand-translation of the above would be to:

(A (x) (IMPLIES
(AND
(activity-in-plan x Max_Thrust_Time
SINGLE SEP_Thrust_Timer)
(parameter x 1 100))
(E (y)
(AND
(activity-in-plan y
Accumulated_Thrust_Time SINGLE
SEP_Time_Accum)
(parameter y 1 100)
(parameter y 2 0)
(parameters-equal x 2 y 3)
{(parameter y 4 WHILE_ NOT_THRUSTING)
(meets x y)))))

Constraints on activities’ parameter values are dealt with by
using two more planner-specific relations:

e parameter, a ternary relation of an activity, an index
into its parameters, and a value. This relation is true if
and only if the activity’s indexed parameter holds that
value.

®* parameters-equal, a 4-ary relation of an activity,
an index into its parameters, another activity, and an
index into that second activities parameters. This
relation is true if and only if the two activities’ indexed
parameters hold the same value.

Hand-translations of examples such as these confirmed that
DS-1’s constraints could be realized as straightforward
database queries. On occasion the translated forms were
somewhat verbose, as illustrated above in the line-by-line

checks of individual parameter

values. Overall, this als & initial
demonstrated the feasibility of 90‘1(:.5.& 'f"““ activities of plan
the approach, but suggested condittons » PLANNER | | PLAN & their pedigree
that hand-translation of a large)
number of constraints could be Constramtsz & %
tedious type checking 2. Automatic
: Database schema loading of
4 COMMITMENT TO . 1. Manually created database
DEVELOP ANALYSIS | 3 Automati
TOOL translation
The success of the second —» DATABASE [¢&———
pilot study led to the next database queries data

phase of the project — a
commitment to develop an
analysis tool that would be
used during testing of the
planner by the planner experts
themselves. While this might
appear to be just a small

l 4. Automatic analysis
Query results (confirmations with justifications or anomalies)

Figure 4 — Planchecker Architecture (changes from 2nd Pilot Study shown in bold)

extension of the previous phase, there were several
important ramifications of this transition from pilot study to
actual development:

Reliance upon the result: The pilot shadowed the
actual space probe development effort, but did not
promise to yield results upon which that development
effort would rely. Indeed, a valid result of the pilot
study could have been that the approach was
infeasible. In contrast, this phase committed to the
development of a tool that the project would rely upon
during testing.

The positive results of the pilot studies were necessary
precursors to this commitment. Additionally, our
realization that the analyzer employed an extensible,
general-purpose language gave us confidence that it
would be capable of handling any combination of
constructs that the planner constraint language
employed.

Developer and end-user different people: The pilot
study tools were developed primarily by the V&V
expert, and used by that same person. In contrast, this
phase committed to the development of a tool that
would be used by the planner experts (notably, the
planner experts) with little, if any, involvement of the
V&V expert during use.

This motivated two extensions to the approach
demonstrated in the second pilot study: (i) automating
the translation from planner constraints into database
queries, and (ii) rendering the outputs of the analysis
step in terms understandable by the planning experts.

End-user agenda: the DS-1 planner experts
constructed an agenda of capabilities they desired of
the to-be-developed tool. This featured a prioritized list
of capabilities, such that the capabilities to be

developed sooner would be the ones they predicted
would be of more value to them.

The preceding pilot studies had helped by providing
illustrations of ‘the kinds of analyses that could be
accomplished employing this approach. The fact that-
those illustrations were in terms of DS-1 specific
information contributed to their (the planner experts)
ability to see its potential. They were thus able to
formulate an agenda at this stage, supplanting what
was previously the V&V tool expert’s guess as to what
analyses might be interesting and/or valuable.

The architecture of the system developed in this phase is
shown in Figure 4. For the remainder of this paper we will
refer to this system as the “planchecker”. It has the same
four stages as the earlier pilot study, but with some
additional capabilities, outlined briefly next:

Additional analyses: the planner experts asked for
further analyses of the temporal constraints, and
analyses of additional information beyond just the
temporal constraints themselves. These required
loading additional information from plans into the
database, and development of additional database
queries.

Automatic translation: there were over 200 planner
constraints (counting each lowest-level clause as one
constraint) that were temporal in nature. Based on the
observations of the second pilot study, we recognized
that manual translation of the whole set would be a
tedious task. This would be even worse if, as was
expected, the set of planner constraints would grow
and change over time. In keeping with our overall goal
of judicious use of automation, it was decided build an
automatic translator that would take any constraint
expressible in the planner language and generate the
equivalent database query.

* Extended output: thc planner experts wanted the
query results to report more than simply “OK™ when a
plan passed the checks. In essence, they wanted a
justification for why a temporal constraint was
satisfied. For example, a constraint that says every
SEP-thrusting interval is followed by an SEP-idle
interval would be justified by listing, for each SEP-
thrusting interval, the specific SEP-idle interval found
to satisfy the constraint.

e Coverage analysis: the planner experts also wanted to
know which of the planner constraints had been
exercised in the plan. For example, only plans that
involved intervals of SEP thrusting would exercise a
constraint of the form “every thrusting interval must

’

Pertinent Details of the Planchecker Development

Like the two pilot studies, the tool was developed primarily
by the V&V tool expert, with assistance from the planner
experts. This development required a somewhat greater
contribution of the planner experts’ time, spread throughout
-the course of the effort.

The hallmark of this effort was the need to deal with many
small (and to the V&YV tool expert often surprising) details.
Most commonly, these were details of the plan constraint
language that the V&V tool expert had not encountered
earlier. The previous pilot study had employed examples of
constraints, drawn from DS-1's entire set of planner
constraints. While representative, those examples did not
cover the full range of constructs. The discovery of these
came to light when the partially developed planchecker was
applied to increasingly more of the entire set of DS-1
constraints, and to increasingly many of the plans that had
been generated. They manifested themselves in one of three
ways:

1. Error (break) during translation, loading or
analysis. The automatic translator (from planner
constraints to database queries) would stop in a run-
time break during translation if it encountered
unexpected syntax in a constraint. For example, the
V&V tool expert assumed length of intervals would be
specified in the constraint as integers. When the
translator, built to this assumption, encountered a
variable name in place of one of these integers, it
halted at that spot. Similar breaks could occur during
loading (e.g., when an unanticipated use of syntax
occurred in a plan) or analysis (e.g., when assumed
interrelationships did not hold of the data).

These details were easy to find and understand.
Finding them was simply a matter of applying the
translator to a broader set of constraints and plans, and
waiting for it to break! Once the V&V expert had his
attention drawn to a specific use of syntax in a
constraint or plan it was easy for him to recognize the

discrepancy. A break in the middle of analysis required
some simple debugging-like activity to trace back to
the underlying source of misunderstanding. Since the
database was implemented on top of Common Lisp,
the power run-time environment available in the
middle of a break made this task fairly simple.

All these cases resulted in a simple question that the
V&V expert wouid ask of the spacecraft planning
experts (e.g., “what does it mean to use a variable
name as a range value where normally there is an
explicit integer?”)

False alarms - spurious anomalies detected by
analysis. Often the automated steps would complete,
but would report a whole host of (as it turned out,
spurious) anomalies. The V&YV tool expert generally
interpreted a large number of anomalies to be
indicative of a flaw in his understanding, rather than a
grossly incorrect plan. Indeed, genuine plan anomalies
were so few and far between that this was an effective
working hypothesis.

The crucial issue in these cases was finding the
underlying cause of the spurious anomalies. The V&V
expert would spend time to narrow down the likely
cause of a reported anomaly. This culminated in a
question to ask of the spacecraft planning experts. For
example, suppose this was the first analysis of a plan
that exercised default interval range values for one of
the temporal relationships. An “anomaly” that could be
traced back to one of these defaults would be
indicative of a misinterpretation of what the default
should be. The V&V expert would then know to ask a
specific question about that default value.

This was a somewhat labor-intensive process for the
V&V tool expert. Its benefit was that it ensured that
the planner experts’ (very limited) time was not
squandered unnecessarily.

False positives ~ failure to detect anomalies. The
surprises that were hardest to recognize and understand -
were those concerning failure to detect anomalies.

In order to have a known source of these, the V&V
tool expert would seed genuine plans with deliberate
errors, and observe whether the analysis caught them.

Another way toward uncovering them stemmed from
an addition the planner experts had made to the
development agenda. DS-1 generated plans contained
activities and traceability information on what was
taken into account in planning those activities. For
example, an instance of the Thrust_Segment activity
(engine on) in the plan would be accompanied by a
trace of the constraint requiring it to be preceded by,
and followed by, Idle_Segment activities (engine
off). The planner experts had asked that the planner

check the validity and completeness of this trace
information, as well as checking that the constraints
held. The planchecker would report an anomaly if it
found a piece of trace information was missing, or if it
could not justify the presence of a piece of trace
information. The latter especially was helpful toward
assuring the completeness and correctness of the
planchecker itself.

In more general terms, we were able to take advantage
of redundancy within the information being analyzed.
This increased our confidence in the validity of the
information itself, and in the validity of the tool that
checked that information.

Development proceeded iteratively, following the
prioritized agenda set by the planner experts. At a finer
granularity, the V&V expert went through repeated cycles
of discovering and responding to details as they came to
light, as discussed above. In retrospect, it is easy to see that
following standard software engineering principles and
practices could have mitigated some of the problems that
arose. For example, the translator from planner constraint
language to database query language was coded
procedurally, but should have used some grammar-based
tool (e.g., POPART [Wile 1997}) permitting a declarative
style of specifying translations. This would have facilitated
the rapid modification of the translator as new requirements
emerged.

The translations themselves (i.e., the database queries and
report generation code) became noticeably more
complicated than those of the second pilot study.
Undoubtedly they tould be simplified somewhat given time
to reflect and rework (the second-time-around
phenomenon). However, some of the complexity reflects a
transition from the pilot study’s overly simplistic notion of
checking a plan. Again, much of the complexity can be
ascribed to details specific to the application. Some
examples follow:

e All the DS-1 planner constraints take the overall form:
for every activity-1 that matches description-1 there
exists an activity-2 that matches description-2. A
constraint.of this form is trivially satisfied if the plan
contains no activities matching description-1. The
planchecker separates such trivial cases in its reports of
constraint satisfaction.

e The DS-1 planner generates plans for a segment of the
entire mission (e.g., one week). Thus a plan is bounded
within some “horizon”- it has a start and an end. Yet,
the constraints may extend across this planning
horizon. We have already seen the constraint requiring
that every Idle_Segment meets a Thrust_Segment. A
plan that ends in an Idle_Segment would appear to fail
this constraint. In practice, the checking of this
constraint must be refined to recognize an

Idie_Segment falling at the end of the current plan.
Such an instance is reported as a special kind of
constraint satisfaction in which the plan satisfies the
constraint within its horizon, but defers some residual
checking for the next plan. The details of all such
deferred checks are included within the planchecker’s
report.

e A few of the constraints reference information that is
not stored in plans. In essence, this external
information directs which one of several constraints is
to apply. The planchecker’s constraint translations
handle these circumstances by checking each
alternative. If all fail, it is an anomaly. If the plan is
found to satisfy one of the alternatives, again, a special
kind of constraint satisfaction is reported, which
included the deduction of what the external
information must be to direct the choice of the satisfied
constraint. (Incidentally, this was one of the more
challenging examples of “false alarms” that the V&V
tool expert encountered. When it arose, he had to
approach the planner experts with the plan and the
violated constraints, but no working hypothesis of
what could account for the violation!)

In summary, the V&V tool expert developed the’
planchecker tool within the allotted development schedule
and fulfilling most of the capabilities asked for in the
development agenda. The transfer of the tool to the planner
experts, and their subsequent use of it, are described briefly
next.

5 USE OF ANALYSIS TOOL

The planchecker was installed on the spacecraft planning
experts’ system for them to use. During testing they
exercise the DS-1 planner on many varied scenartos of
operation. Each test (usually) yields a plan, and the
planchecker is applied to check each such generated plan.
Its resuits are accumulated along with other statistics about
the plan generation, e.g., how long it took to generate the
plan, how much memory was required to do so. The
planchecker runs automatically, and can be easily applied
in “batch mode” to a whole series of plans. It is tolerably
efficient, taking on the order of 2 minutes to complete the
checking of a typical plan. The key observation is that
interaction with the V&V tool expert is not required during
this process.

Over the course of use, several sets of changes have been
made to the planner constraints. Re-translating the entire
set of constraints, to generate a new instance of the test
oracles, easily accommodated these changes. On these
occasions the V&V tool expert has been on hand. They
have gone smoothly, with only one instance of the need to
step in and make a corrective modification.

The spacecraft planner experts have extended their use of
the planchecker in one particularly interesting manner. This

M y Goals & initial activities
anua -
ditions fpl
Conceptual decomposition conaiions | PLANNER L] PLAN jolpian
constraint and expression Constraints F™
(natural A 1
language) Datab hem utomatic
guag atabase sc a loading of
Manual database
expression
DATABASE "—"d .
ata
Database query >

Figure 5 - Extended use of Planchecker (extensions shown in bold)

i Automatic analysis

Query results

arises from the limited forms of expression allowed as
input to the planner. On occasion, they have found it
necessary to decompose a fairly obvious constraint that
they want the plans to exhibit into a set of constraints that
the planner will accept, and that in combination will
achieve the original constraint. This is a manual process.
Because the database query language is not so tightly
constrained, it is often possible to hand-express their
original constraint into a single database query. This can
then be applied to automatically check plans. Doing so
gives them increased confidence in the validity of their
manual translation of the original constraint into multiple
planner constraints. Figure 5 shows the architecture of this
extended use of the planchecker.

The implications of this are twofold: (1) the planner experts
have mastered the use of the database language and the
special-purpose constructs added to represent and reason
about plans. Seeing examples they were already familiar
with, namely translations of the standard constraints,
helped them rapidly achieve this level of understanding. (2)
Their extensions take advantage of some of the automation
of the planchecker architecture — the automatic loading of
plans into the database, and the evaluation of database
queries. (They cannot, of course, use the translator from
planner constraint language, because their original
constraints are not expressible in that language.) This has
meant they have attained the extra validation at the cost of
very little extra time and effort on their part.

6 CONCLUSIONS

This overall task was relatively modest in scale, and
involved only a small number of personnel. Hence all of
our conclusions should be taken to refer to relatively small-
scale software development.

Our work follows the trend towards the use of automation
in testing. [Richardson 1994] presents an approach to

generating test oracles from specifications; [Jagadeesan et
al, 1997] present a feasibility study on automatically testing
software for violations of safety properties expressed in
temporal logic. Our work culminated in the insertion of a
high degree of automation into the generation of the test
oracles themselves. (Note that we have not addressed the’
generation of test cases, which is also an interesting and
important problem). Our experience on applying this to a
real-world (actually, out-of-this-world) problem suggests
that while this may appear a modest objective from a
research perspective, putting this into practice can be a non-
trivial task.

The lessons we draw from this experience are presented
next, beginning with those related to general software
engineering principles, followed by those specific to V&V.

Software Engineering Lesson 1: Pilot Studies
Our experience re-iterates several well-understood virtues
of pilot studies as a precursor to actual development.

In particular, pilot studies:

e provide evidence of feasibility on specific cases,

s serve as prototypes whose inadequacies point out areas
which should be done better the next time around, and

e yield examples which inspire
extensions, further applications, etc.

suggestions for

In addition to the above, we found it useful to formulate a
Justification of why the pilot study approach would extend
to the full problem. In our case, this was the argument that
the planchecker employed a less restricted and readily
extended language, and so would be able to accommodate
any constraint that the more restricted planner language
would likely use. Such a justification nicely complemented
the evidence provided by the pilot studies’ specific cases.

Software [Engineering Lesson 2: "On-Demand"
Specification and Development

When domain experts’ time is a critical resource, follow an
"on-demand” policy of specification and development to

make best use of their time and availability.

At the start of the project we lacked a complete and fully
documented specification of the task (i.e., plans and the
planner language). Furthermore, we needed to make best
use of the domain experts’ valuable and limited time.

These problems were alleviated by the existence of
numerous sample inputs (i.e., plans and planner
constraints). Also, the nature of the task clearly
circumscribed the areas that the analysis expert would have
to master.

We followed an “on demand” approach to knowledge
acquisition, where the analysis expert would proceed as far
as possible before making the next enquiry of the planner
experts. This made good use of the planner experts’ limited
time and availability, since it kept the sum total of their
time small, consumed it in small chunks, and could be done
asynchronously (e.g., via email exchanges, supplemented
" by brief telephone calls).

Software Engineering Lesson 3: Strive for Flexibility
Our overall experience reinforces the value of flexibility,
and therefore the value of approaches that yield flexible
solutions.

At the time of the first pilot study we did not know that it
would lead to the development of a planchecker-like tool,
but fortunately our overall approach proved to be
sufficiently flexible to accommodate the required
extensions and elaborations.

Our major area of dissatisfaction with the planchecker is
that its translator component (from planner constraints to
database queries) was programmed procedurally. A more
declarative style would be superior. In such a style, the
translation would be expressed as a set of translation rules,
executed by a general-purpose rule engine. For transiation
tasks of this scale and complexity, the advantages of a
declarative style are that the translation rules are readily
created, understood and maintained.

In retrospect, such an approach would likely have yielded a
net time savings for the V&V tool expert, as well as
resulted in a more perspicuous translation tool.

We also speculate that the planner experts, guided by the
translations of their planner constraint language, would
readily see how to use and write additional translations.
Perhaps they could even go on to use the same approach to
extend the planner constraint language itself, i.e., to
automatically translate the formal expression of a
conceptual constraint into the set of simpler constraints that
the planner language currently accepts.

11

V&V Lesson 1: Encourage and Use Redundancy and
Rationale

V&V can make good use of redundancy and rationale, to
increase assurance in the V&V results, and to assist in the
development of the V&V technology itself.

Each plan generated by the spacecraft planner contains both
a schedule of activities, and a rationale relating those
activities to the constraints taken into account in their
planning. Checking both of these might appear redundant —
surely what really matters is whether or not a plan satisfies
all the constraints. Nevertheless, we found this redundancy
to be useful in two ways:

1. The planner experts gained additional assurance that
their generated plans were correct, in particular, that
they generated the “right” results “for the right
reasons.”

2. The V&V tool expert made use of the redundancy to
extend (and debug) his understanding of the task.
Every constraint that the planchecker identified as
being involved had to be identified in the plan’s
rationale, thus forcing the planchecker to be complete
and correct in its treatment of rationales. Likewise,
every constraint mentioned in the rationale had to be -
seen to be involved by the planchecker, thus forcing
the planchecker to be complete and correct in its
treatment of constraints.

V&YV Lesson 2: Database-based Analysis
The use of a database as the underlying analysis engine has
practical applications and benefits.

Based on the first of our pilot studies we had made the
argument that database-based analysis was suited to
“lightweight” V&V [Feather1998]. The success of this
whole effort strengthens our belief in this position, and
highlights some further benefits.

The database approach suggests a natural decomposition of
the problem into: translating the V&V conditions into
database queries, loading the data into the database,
performing the analyses, and generating the reports. This
simple architecture nicely separates the key steps. For
example, we are about to modify the planchecker’s
database loading portion in response to a recent change in
format of plan structures; this will not require us to modify
any of the other steps. Also, this architecture facilitated the
planner experts’ extended use of the planchecker (i.e., their
checking of complex conceptual constraints by manually
expressing them as database queries).

The database itself is used as intermediary between analysis
and report generation steps. The planchecker places
analysis results back into the database, alongside the
original data (plans) from which those results are derived.
Thus the report generation phase has uniform and
simultaneous access to both kinds of data regardless of

source, considerably facilitating the report generation task.

V&YV Lesson 3: Analysis Results Need Structure
Test oracles should yield results with far more content and
structure than simply "passed” or "failed”.

During the pilot studies it had sufficed to yield analysis
results with trivial stnpp ructure — they reported that the
object had “passed” the analysis test, or had “failed due
to....”

The planchecker development entailed the generation of
analysis results and reports with considerably more
structure to the “passed” cases. For example, reports that
identified which constraints had been exercised by a plan,
and that distinguished how constraints had been satisfied:
those that were wholly satisfied by the plan, those that
deferred some condition to activities beyond the plan’s
horizons, etc.

We suspect that there may be general principles by which
test oracles can be built to yield such structured analysis
results, an area we think is worthy of further attention.

ACKNOWLEDGEMENTS
The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics
and Space administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of
Technology.

’

REFERENCES

[Allen 1983] J.F. Allen. Maintaining Knowledge about
Temporal Intervals. Communications of the ACM,
26(11):832-843, 1983.

[Cohen 1989] D. Cohen. Compiling Complex Database
Transition Triggers. Proceedings of the ACM SIGMOD
International Conference on the Management of Data
(Portland, Oregon, 1989), ACM Press, 225-234.

12

[DS1 1998] http://nmp.jpl.nasa.gov/ds1/

{Feather1998] M.S. Feather. Rapid Application of
Lightweight Formal Methods for Consistency
Analyses. To appear in IEEE Transactions on Software
Engineering.

[Jagadeesan et al, 1997] L.J. Jagadeesan, A. Proter, C,
Puchol, J.C. Ramming & L.G.Votta. Specification-
based Testing of Reactive Software: Tools and
Experiments. Proceedings of the [9th International
Conference on Software Engineering (Boston, MA,
May 1997), 525-535.

[Pell 1996] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N.
Muscettola, P.P. Nayak, M.D. Wagner & B.C.
Williams. A Remote Agent Protoype for Spacecraft
Autonomy. Proceedings of the SPIE conference on

Optical Science, Engineering and Instrumentation,
1996.

[Pell 1997] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N.
Muscettola, P.P. Nayak, M.D. Wagner & B.C.
Williams. An Autonomous Spacecraft Agent Prototype.
Proceedings First International Conference on
Autonomous Agents. ACM Press, 1997.

[RAX
http://nmp.jpl.nasa.gov/ds1/tech/autora.html

[Richardson, Aha & O'Malley 1992] D.J. Richardson, S.L.
Aha & T.). O'Malley. Specification-based Test Oracles
for Reactive Systems. Proceedings of the 14th
International Conference on Software Engineering
(Melbourne, Australia, May 1992), 105-118.

[SOHO 1998] SOHO Mission Interruption Preliminary
Status and Background Report — July 15, 1998
http://umbra.nascom.nasa.gov/soho/prelim_and_backgr
ound_rept.html

[Wile 1997] D. Wile. Abstract Syntax from Concrete
Syntax. Proceedings of the 19th International Conference
on Software Engineering (Boston, MA, May 1997), 472-
480

1998]

